2,025 research outputs found

    Tensions as a framework for managing work in collaborative workplaces: A review of the empirical studies

    Get PDF
    Companies are increasingly implementing Collaborative Workplaces (CWs) to promote office collaboration and flexibility. Despite the rapid diffusion of CWs across industries and organizations, research findings suggest that their benefits often fail to materialize due to the existence of tensions and contradictions that develop through the daily actions and interactions of workplace users. This literature review sheds some light on the development of tensions and contradictions in CWs by focusing on their implications for social relations at work. This review identifies the oppositional tensions that surface in CW research findings: flexibility vs. structure, fluidity vs. stability, and exposure vs. privacy. In disclosing the underlying mechanisms, this study connects these tensions and their management to the autonomy-control paradox that emerges in CWs. It concludes by suggesting some approaches that are available to managers to assist them in dealing with tensions and unleash creativity, participation, and adaptability

    The Mean Deviation from the Median of the Dagum Distribution

    Get PDF
    The Dagum model is particularly suitable for the analysis of the distributions of economic quantities, such as income, assets and consumption. The purpose of this note is to derive the expression of the mean deviation from the median of the Dagum distribution to study the behavior of the scale and shape parameters in terms of absolute variability and in terms of relative variability

    Analisi integrata dell'espressione di geni/microrna in un modello di epatocancerogenesi sperimentale

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, accounting for an estimated half million deaths annually, and represents one of the major health problems. Although much is known about the cellular changes that lead to HCC, the molecular pathogenesis of HCC is not yet well understood. Gene expression studies conducted with microarray techniques and real-time PCR, suggest that tumors are characterized by an aberrant activation of signal transduction pathways involved in proliferation, survival, cell differentiation and angiogenesis. However, for HCC, these studies don’t allow the identification of a "signature" or a single specific pathway that is predominantly involved in the development and prognosis of the malignancy. Recently it has become clear that the classification and stratification of cancer can be performed not only through the analysis of gene expression, but also by analyzing the expression of microRNAs, small non-coding RNA molecules that negatively control gene expression and protein synthesis. In the present study we performed an integrated analysis of genome-wide mRNA and microRNA (miR) expression profiles to characterize the molecular events involved in the step-by-step progression (preneoplastic nodules-adenoma-early HCC-advanced HCC) of hepatocellular carcinoma (HCC) in the rat Resistant-Hepatocyte (R-H) model. Interestingly, while analysis of the transcriptome clustered together preneoplastic lesions and advanced HCC, suggesting that the majority of the genes dysregulated in HCC are already aberrantly expressed in early lesions, miRNome analysis did not co-cluster the two populations but, very interestingly, stratified the lesions according to their stage of progression to HCC. The results also unveiled specific genes/miRs, altered in the very early steps of the carcinogenic process, in the transition from adenoma to early HCC or in the progression to advanced HCC. By assessing the correlation between the expression of each miRNA and its targets, we determined that distinct pathways are aberrantly activated in different stages of the carcinogenic process. This integrated approach was also able to identify molecular events discriminating the preneoplastic lesions that will progress to HCC from those that spontaneously regress. Finally, 110 orthologous genes were almost super imposable between rat and human HCC signatures, supporting the value of the R-H model in recapitulating human liver cancer. Conclusions: This systematic analysis deciphered the molecular phenotypes of the several steps involved in the onset and progression of HCC and investigated their variations at mRNA and miR levels. In view of the striking similarity between mRNA and miRs commonly dysregulated in rat and human HCC, our results provide a valuable source for future studies and highlight promising genes, miRNAs, pathways and processes which may be useful for diagnostic or therapeutic applications

    Augev Method and an Innovative Use of Vocal Spectroscopy in Evaluating and Monitoring the Rehabilitation Path of Subjects Showing Severe Communication Pathologies

    Get PDF
    A strongly connotative element of developmental disorders (DS) is the total or partial impairment of verbal communication and, more generally, of social interaction. The method of Vocal-verb self-management (Augev) is a systemic organicistic method able to intervene in problems regarding verbal, spoken and written language development successfully. This study intends to demonstrate that it is possible to objectify these progresses through a spectrographic examination of vocal signals, which detects voice phonetic-acoustic parameters. This survey allows an objective evaluation of how effective an educational-rehabilitation intervention is. This study was performed on a population of 40 subjects (34 males and 6 females) diagnosed with developmental disorders (DS), specifically with a diagnosis of the autism spectrum disorders according to the DSM-5. The 40 subjects were treated in “la Comunicazione” centers, whose headquarters are near Bari, Brindisi and Rome. The results demonstrate a statistical significance in a correlation among the observed variables: supervisory status, attention, general dynamic coordination, understanding and execution of orders, performing simple unshielded rhythmic beats, word rhythm, oral praxies, phono-articulatory praxies, pronunciation of vowels, execution of graphemes, visual perception, acoustic perception, proprioceptive sensitivity, selective attention, short-term memory, segmental coordination, performance of simple rhythmic beatings, word rhythm, voice setting, intonation of sounds within a fifth, vowel pronunciation, consonant pronunciation, graphematic decoding, syllabic decoding, pronunciation of caudate syllables, coding of final syllable consonant, lexical decoding, phoneme-grapheme conversion, homographic grapheme decoding, homogeneous grapheme decoding, graphic stroke

    Analisi integrata dell'espressione di geni/microrna in un modello di epatocancerogenesi sperimentale

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, accounting for an estimated half million deaths annually, and represents one of the major health problems. Although much is known about the cellular changes that lead to HCC, the molecular pathogenesis of HCC is not yet well understood. Gene expression studies conducted with microarray techniques and real-time PCR, suggest that tumors are characterized by an aberrant activation of signal transduction pathways involved in proliferation, survival, cell differentiation and angiogenesis. However, for HCC, these studies don’t allow the identification of a "signature" or a single specific pathway that is predominantly involved in the development and prognosis of the malignancy. Recently it has become clear that the classification and stratification of cancer can be performed not only through the analysis of gene expression, but also by analyzing the expression of microRNAs, small non-coding RNA molecules that negatively control gene expression and protein synthesis. In the present study we performed an integrated analysis of genome-wide mRNA and microRNA (miR) expression profiles to characterize the molecular events involved in the step-by-step progression (preneoplastic nodules-adenoma-early HCC-advanced HCC) of hepatocellular carcinoma (HCC) in the rat Resistant-Hepatocyte (R-H) model. Interestingly, while analysis of the transcriptome clustered together preneoplastic lesions and advanced HCC, suggesting that the majority of the genes dysregulated in HCC are already aberrantly expressed in early lesions, miRNome analysis did not co-cluster the two populations but, very interestingly, stratified the lesions according to their stage of progression to HCC. The results also unveiled specific genes/miRs, altered in the very early steps of the carcinogenic process, in the transition from adenoma to early HCC or in the progression to advanced HCC. By assessing the correlation between the expression of each miRNA and its targets, we determined that distinct pathways are aberrantly activated in different stages of the carcinogenic process. This integrated approach was also able to identify molecular events discriminating the preneoplastic lesions that will progress to HCC from those that spontaneously regress. Finally, 110 orthologous genes were almost super imposable between rat and human HCC signatures, supporting the value of the R-H model in recapitulating human liver cancer. Conclusions: This systematic analysis deciphered the molecular phenotypes of the several steps involved in the onset and progression of HCC and investigated their variations at mRNA and miR levels. In view of the striking similarity between mRNA and miRs commonly dysregulated in rat and human HCC, our results provide a valuable source for future studies and highlight promising genes, miRNAs, pathways and processes which may be useful for diagnostic or therapeutic applications

    Mean Difference of Truncated Normal Distribution

    Get PDF
    The purpose of this paper is to broaden the knowledge of mean difference and, in particular, of an important distribution model known as truncated normal distribution, which is widely used in applied sciences and economics. In this work, we obtained the general formula of mean difference, which is not yet reported in literature, for the aforementioned distribution model and also for particular truncated cases

    Design of hybrid gels based on gellan-cholesterol derivative and P90G liposomes for drug depot applications

    Get PDF
    Gels are extensively studied in the drug delivery field because of their potential benefits in therapeutics. Depot gel systems fall in this area, and the interest in their development has been focused on long-lasting, biocompatible, and resorbable delivery devices. The present work describes a new class of hybrid gels that stem from the interaction between liposomes based on P90G phospholipid and the cholesterol derivative of the polysaccharide gellan. The mechanical properties of these gels and the delivery profiles of the anti-inflammatory model drug diclofenac embedded in such systems confirmed the suitability of these hybrid gels as a good candidate for drug depot applications

    Assessment of the effects of dietary vitamin D levels on olanzapine-induced metabolic side effects : focus on the endocannabinoidome-gut microbiome axis

    Get PDF
    Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet

    Splenic Doppler Resistive Index Variation Mirrors Cardiac Responsiveness and Systemic Hemodynamics upon Fluid Challenge Resuscitation in Postoperative Mechanically Ventilated Patients

    Get PDF
    Objective. To test if splenic Doppler resistive index (SDRI) allows noninvasive monitoring of changes in stroke volume and regional splanchnic perfusion in response to fluid challenge. Design and Setting. Prospective observational study in cardiac intensive care unit. Patients. Fifty-three patients requiring mechanical ventilation and fluid challenge for hemodynamic optimization after cardiac surgery. Interventions. SDRI values were obtained before and after volume loading with 500 mL of normal saline over 20 min and compared with changes in systemic hemodynamics, determined invasively by pulmonary artery catheter, and arterial lactate concentration as expression of splanchnic perfusion. Changes in stroke volume >10% were considered representative of fluid responsiveness. Results. A <4% SDRI reduction excluded fluid responsiveness, with 100% sensitivity and 100% negative predictive value. A >9% SDRI reduction was a marker of fluid responsiveness with 100% specificity and 100% positive predictive value. A >4% SDRI reduction was always associated with an improvement of splanchnic perfusion mirrored by an increase in lactate clearance and a reduction in systemic vascular resistance, regardless of fluid responsiveness. Conclusions. This study shows that SDRI variations after fluid administration is an effective noninvasive tool to monitor systemic hemodynamics and splanchnic perfusion upon volume administration, irrespective of fluid responsiveness in mechanically ventilated patients after cardiac surgery

    Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation

    Get PDF
    Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPAR α ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPAR α activation sustains its own cellular effects through ligand biosynthesis. In addition to PPAR α, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert antiinflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis
    corecore